The k-means-u* algorithm: non-local jumps and greedy retries improve k-means++ clustering
نویسنده
چکیده
We present a new clustering algorithm called k-means-u* which in many cases is able to significantly improve the clusterings found by k-means++, the current de-facto standard for clustering in Euclidean spaces. First we introduce the k-means-u algorithm which starts from a result of k-means++ and attempts to improve it with a sequence of non-local “jumps” alternated by runs of standard k-means. Each jump transfers the “least useful” center towards the center with the largest local error, offset by a small random vector. This is continued as long as the error decreases and often leads to an improved solution. Occasionally k-means-u terminates despite obvious remaining optimization possibilities. By allowing a limited number of retries for the last jump it is frequently possible to reach better local minima. The resulting algorithm is called k-means-u* and dominates k-means++ wrt. solution quality which is demonstrated empirically using various data sets. By construction the logarithmic quality bound established for k-means++ holds for k-means-u* as well.
منابع مشابه
A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملTabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کاملAn Improved K-Means with Artificial Bee Colony Algorithm for Clustering Crimes
Crime detection is one of the major issues in the field of criminology. In fact, criminology includes knowing the details of a crime and its intangible relations with the offender. In spite of the enormous amount of data on offenses and offenders, and the complex and intangible semantic relationships between this information, criminology has become one of the most important areas in the field o...
متن کاملImproved COA with Chaotic Initialization and Intelligent Migration for Data Clustering
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.09059 شماره
صفحات -
تاریخ انتشار 2017